首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47425篇
  免费   3738篇
  国内免费   2215篇
  2023年   837篇
  2022年   768篇
  2021年   1535篇
  2020年   1578篇
  2019年   2103篇
  2018年   1735篇
  2017年   1238篇
  2016年   1371篇
  2015年   1727篇
  2014年   2624篇
  2013年   3343篇
  2012年   1962篇
  2011年   2435篇
  2010年   1858篇
  2009年   2164篇
  2008年   2171篇
  2007年   2236篇
  2006年   2009篇
  2005年   1906篇
  2004年   1697篇
  2003年   1475篇
  2002年   1460篇
  2001年   1205篇
  2000年   1000篇
  1999年   874篇
  1998年   775篇
  1997年   717篇
  1996年   686篇
  1995年   734篇
  1994年   695篇
  1993年   632篇
  1992年   611篇
  1991年   566篇
  1990年   448篇
  1989年   426篇
  1988年   395篇
  1987年   323篇
  1986年   271篇
  1985年   360篇
  1984年   431篇
  1983年   248篇
  1982年   324篇
  1981年   305篇
  1980年   252篇
  1979年   232篇
  1978年   157篇
  1977年   115篇
  1976年   125篇
  1974年   52篇
  1973年   53篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
991.
The study of the morphological defects unique to interspecific hybrids can reveal which developmental pathways have diverged between species. Drosophila melanogaster and D. santomea diverged more than 10 million years ago, and when crossed produce sterile adult females. Adult hybrid males are absent from all interspecific crosses. We aimed to determine the fate of these hybrid males. To do so, we tracked the development of hybrid females and males using classic genetic markers and techniques. We found that hybrid males die predominantly as embryos with severe segment‐specification defects while a large proportion of hybrid females embryos hatch and survive to adulthood. In particular, we show that most male embryos show a characteristic abdominal ablation phenotype, not observed in either parental species. This suggests that sex‐specific embryonic developmental defects eliminate hybrid males in this interspecific cross. The study of the developmental abnormalities that occur in hybrids can lead to the understanding of cryptic molecular divergence between species sharing a conserved body plan.  相似文献   
992.
Hybrid zones provide insight into the nature of species boundaries and the evolution of barriers to gene exchange. Characterizing multiple regions within hybrid zones is essential for understanding both their history and current dynamics. Here, we describe a previously uncharacterized region of a well‐studied hybrid zone between two species of field crickets, Gryllus pennsylvanicus and G. firmus. We use a combination of mitochondrial DNA sequencing, morphological data, and modeling of environmental variables to identify the ecological factors structuring the hybrid zone and define patterns of hybridization and introgression. We find an association between species distribution and natural habitat; Gryllus pennsylvanicus occupies natural habitat along forest edges and natural clearings, whereas G. firmus occupies more disturbed areas in agricultural and suburban environments. Hybridization and introgression occur across patch boundaries; there is evidence of substantial admixture both in morphological characters and mtDNA, over a broad geographic area. Nonetheless, the distribution of morphological types is bimodal. Given that F1 hybrids are viable and fertile in the lab, this suggests that strong pre‐zygotic barriers are operating in this portion of the hybrid zone.  相似文献   
993.
Female European corn borer, Ostrinia nubilalis, produce and males respond to sex pheromone blends with either E‐ or Z‐Δ11‐tetradecenyl acetate as the major component. E‐ and Z‐race populations are sympatric in the Eastern United States, Southeastern Canada, and the Mediterranean region of Europe. The E‐ and Z‐pheromone races of O. nubilalis are models for incipient species formation, but hybridization frequencies within natural populations remain obscure due to lack of a high‐throughput phenotyping method. Lassance et al. previously identified a pheromone gland‐expressed fatty‐acyl reductase gene (pgfar) that controls the ratio of Δ11‐tetradecenyl acetate stereoisomers. We identified three single nucleotide polymorphism (SNP) markers within pgfar that are differentially fixed between E‐ and Z‐race females, and that are ≥98.2% correlated with female pheromone ratios measured by gas chromatography. Genotypic data from locations in the United States demonstrated that pgfar‐z alleles were fixed within historically allopatric Z‐pheromone race populations in the Midwest, and that hybrid frequency ranged from 0.00 to 0.42 within 11 sympatric sites where the two races co‐occur in the Eastern United States (mean hybridization frequency or heterozygosity (HO) = 0.226 ± 0.279). Estimates of hybridization between the E‐ and Z‐races are important for understanding the dynamics involved in maintaining race integrity, and are consistent with previous estimates of low levels of genetic divergence between E‐ and Z‐races and the presence of weak prezygotic mating barriers.  相似文献   
994.
Female mate preferences for ecologically relevant traits may enhance natural selection, leading to rapid divergence. They may also forge a link between mate choice within species and sexual isolation between species. Here, we examine female mate preference for two ecologically important traits: body size and body shape. We measured female preferences within and between species of benthic, limnetic, and anadromous threespine sticklebacks (Gasterosteus aculeatus species complex). We found that mate preferences differed between species and between contexts (i.e., within vs. between species). Within species, anadromous females preferred males that were deep bodied for their size, benthic females preferred larger males (as measured by centroid size), and limnetic females preferred males that were more limnetic shaped. In heterospecific mating trials between benthics and limnetics, limnetic females continued to prefer males that were more limnetic like in shape when presented with benthic males. Benthic females showed no preferences for size when presented with limnetic males. These results show that females use ecologically relevant traits to select mates in all three species and that female preference has diverged between species. These results suggest that sexual selection may act in concert with natural selection on stickleback size and shape. Further, our results suggest that female preferences may track adaptation to local environments and contribute to sexual isolation between benthic and limnetic sticklebacks.  相似文献   
995.
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.  相似文献   
996.
Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i−1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i−1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts.  相似文献   
997.
Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.  相似文献   
998.
A study was conducted to evaluate the main effects of dietary nitrate adaptation by cattle and alfalfa cell wall to starch ratio in in vitro substrates on nitrate disappearance and nitrite and volatile fatty acid (VFA) concentrations, as well as hydrogen (H2) and methane (CH4) accumulations. Rumen fluid from steers fed diets containing urea or nitrate was added into in vitro incubations containing sodium nitrate as the sole nitrogen source and 20 cell wall : 80 starch or 80 cell wall : 20 starch as the carbohydrate source. The results showed that during 24 h incubation, rumen fluid inoculums from steers adapted to dietary nitrate resulted in more rapid nitrate disappearance by 6 h of incubation (P < 0.01), no significant effect on nitrite concentration and diminished CH4 accumulation (P < 0.05). Cell wall to starch ratio did not affect nitrate disappearance, CH4 accumulation and total VFA concentration. The higher cell wall ratio had the lower total gas production and H2 concentration (P < 0.05). Ammonia-N (NH3-N) concentration increased because of adaptation of donors to nitrate feeding (P < 0.05). Nitrate adaptation did not alter total VFA concentration, but increased acetate, and decreased propionate and butyrate molar proportions (P < 0.01).  相似文献   
999.
The human deafness‐pigmentation syndromes, Waardenburg syndrome (WS) type 2a, and Tietz syndrome are characterized by profound deafness but only partial cutaneous pigmentary abnormalities. Both syndromes are caused by mutations in MITF. To illuminate differences between cutaneous and otic melanocytes in these syndromes, their development and survival in heterozygous Microphthalmia‐White (MitfMi‐wh/+) mice were studied and hearing function of these mice characterized. MitfMi‐wh/+ mice have a profound hearing deficit, characterized by elevated auditory brainstem response thresholds, reduced distortion product otoacoustic emissions, absent endocochlear potential, loss of outer hair cells, and stria vascularis abnormalities. MitfMi‐wh/+ embryos have fewer melanoblasts during embryonic development than their wild‐type littermates. Although cochlear melanocytes are present at birth, they disappear from the MitfMi‐wh/+ cochlea between P1 and P7. These findings may provide insight into the mechanism of melanocyte and hearing loss in human deafness‐pigmentation syndromes such as WS and Tietz syndrome and illustrate differences between otic and follicular melanocytes.  相似文献   
1000.
Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design “fine-tuned” metabolic engineering strategies in silico that can be implemented directly with available genomic tools.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号